Молибден удобрение

Микроэлементы. Кобальт

26.01.2017

Физиологическая роль микроэлемента. Кобальт (Со) – микроэлемент, известный главным образом тем, что присутствие его в живом организме необходимо для синтеза витамина В12 (это сложное органическое соединение играет важнейшую роль в процессах кроветворения). В растениях кобальт необходим для фиксации молекулярного азота, он способствует образованию бактерий в клубеньках и листьях бобовых культур. Кобальт накапливается в пыльце и ускоряет ее прорастание, участвует в ауксиновом обмене, т.е. стимулирует процессы роста растений (в т.ч. способствует растяжению клеточных оболочек). Этот металл участвует в клеточной репродукции листьев (увеличение толщины и объема мезофилла, размеров и количества клеток столбчатой и губчатой паренхимы листа). Кроме того, кобальт повышает общее содержание воды в растениях, чем способствует увеличению засухоустойчивости культур.

Установлено влияние кобальта на формирование и функционирование фотосинтетического аппарата растений путем концентрации хлоропластов и пигментов в листьях. И хотя необходимое для растений количество этого микроэлемента очень невелико (до 12 мг/кг сухой массы), а незаменимость его для растений строго не доказана, кобальтовые удобрения все же способствуют повышению урожайности сельскохозяйственных культур и улучшают качество продукции.

Симптомы дефицита и избытка кобальта. Внешние показатели недостатка кобальта в растениях схожи с признаками дефицита азота. Они проявляются в замедлении роста растений, пожелтении и хлорозе листьев, укороченном цикле развития культур. Наиболее ощутим недостаток этого микроэлемента у зернобобовых. В этом случае отмечается низкая активность клубеньков, а также снижение интенсивности образования бактероидной ткани и подвижности бактероидов.

Дефицит кобальта в травах провоцирует недостаток этого элемента в питании животных, что приводит к развитию у них авитаминоза, замедлению образования гемоглобина, белков, нуклеиновых кислот, появлению эндемического зоба. Недостаток кобальта в травах возникает, когда содержание его в почве составляет менее 5 мг/кг. Критический уровень содержания этого микроэлемента в сухой массе растительной пищи, определяющий успешное развитие животных, составляет 0,08 – 0,10 мг/кг.

Избыток кобальта приводит к перенасыщению краев и кончиков листьев растения этим элементом, что проявляется в побелении и отмирании этих участков.

Кобальтовые удобрения и их применение. В природе кобальт находится в различных по степени доступности для растений соединениях. Он может входить в состав почвенных алюмосиликатов, а также поглощаться минеральными и органическими коллоидами. Соединения кобальта растворимы только в минеральных кислотах, поэтому источником почвенного питания растений служат растворимые соли серной, соляной и азотной кислот, в составе которых находится этот микроэлемент.

Кобальтовые и кобальтосодержащие удобрения положительно влияют на урожайность и качество семян клевера, конопли, винограда и других плодово-ягодных культур, огурцов, томатов, лука, капусты, салата. Но особенно чувствительны к таким удобрениям бобовые культуры. Применять кобальтовые удобрения следует в первую очередь для посевов люцерны, клевера, гороха, гречихи, сои, свеклы, льна, ячменя, ржи озимой и для винограда. При этом норма расхода кобальта составляет 100 – 300 г/га.

В кобальтовых удобрениях нуждаются прежде всего луга и пастбища. Недостаток этого элемента свойствен дерново-подзольным почвам, выщелоченным черноземам, серым лесным нейтральным и щелочным грунтам, а также участкам после известкования. В качестве кобальтовых удобрений применяют сульфат кобальта, хлорид кобальта и промышленные кобальтосодержащие отходы.

Для предпосевной обработки семян используют водный раствор кобальта. Количество и концентрация его различны в зависимости от культуры. Так, для обработки семян сахарной свеклы (на 1 ц) используют раствор 20 г кобальта в 4 л воды; для гороха (на 1 ц) достаточно 10 г кобальта, растворенного в 2 л воды. Также используют для замачивания семян нитрит или сульфат кобальта в концентрации 1 мг/л.

При внесении удобрений в почву обычно используют сернокислый или хлористый кобальт при норме расхода 300 – 500 г/га. На лугах их применяют в сочетании с минеральными удобрениями (до 1 кг/га). Как показывает практика, у зернобобовых (вика) норма внесения удобрений до 1,5 кг/га позволяет повысить урожайность семян на 1,2 ц/га, а содержание протеина в них – на 0,8 %.

Внекорневые подкормки сельскохозяйственных растений позволяют восполнить недостающее количество кобальта путем активного поглощения его листьями. Для этого применяют 0,01 – 0,1% раствор сернокислого кобальта. Внекорневую подкормку зернобобовых культур проводят в фазе 6 – 7 листьев из расчета 50 – 60 г/га сернокислого кобальта (или 11 г/га кобальта). Для картофеля и кукурузы необходимая норма микроэлемента составляет 10 – 15 г/га, а для свеклы и кормовых корнеплодов она находится в пределах от 17 – 22 г/га Со.

Использование кобальта во внекорневых подкормках позволяет повысить урожайность у сахарной свеклы на 35 ц/га, а сахаристость корнеплодов – на 0,8%, в результате чего сбор сахара увеличивается на 10 ц/га. Применение кобальтосодержащих соединений значительно улучшает состояние таких культур как томат, гречиха, овес, ячмень, горох. Кроме того, замечено более быстрое созревание ячменя, повышение содержания жира в семенах льна. А в томатах и кочанах капусты увеличивается количество сахара и аскорбиновой кислоты.

Молибдат аммония (аммоний молибденовокислый) – соединение неорганической природы, соль NH4 и H2MoO4. Имеет вид бесцветных, белых или с зеленым/желтым оттенком кристаллических структур. При контакте с водой поддается абсолютному гидролизу. Растворяется в сильных кислотах и щелочных растворах; в этиловом спирте и диметилкетоне не растворяется. Получение осуществляют путем сочетания этанола и насыщенных аммиачных растворов триоксомолибдена. Молярная масса – 196,01 г/моль, плотность – 2,27 г/см³. Формула: (NH4)2MoO4.

Молибдат аммония как удобрение

Данное соединение нашло широкое применение в аграрном комплексе как молибденовое удобрение (микроудобрение) с количеством основного вещества от 52 %. Его используют для овощей, плодово-ягодных и цветочных культур.

Молибден – важнейший микроэлемент для растительного мира, так как полностью обеспечивает насаждения азотом, принимает участие в фиксации клубеньковыми и свободноживущими бактериями азота из атмосферы. Он – незаменимый металлический компонент большого количества ферментов. Является участником углеводного, азотного и фосфорного обменов, витамино- и хлорофиллосинтеза. Кроме того, интенсифицирует фотосинтез, является составляющей нитратредуктазы, отвечающей за восстановление нитратов до аммиака в растениях. Благодаря ему удается в разы повысить качество готовой продукции, количество белков, сахаров и витаминов.

При дефиците данного вещества не исключены проявления, сходные с азотным голоданием:

– верхний слой стеблей сжимается;

– структура листьев меняется;

– на верхней стороне старых листков между прожилками появляются пятна (ярко-зеленые, желтые или бледно-оранжевые);

– цветки на рассаде развиваются слабо;

– ростовые точки отмирают;

– новые листки скручиваются внутрь;

– растение быстро вянет, остро реагирует на температурные перепады и плохо переносит засуху.

Аналогично чреват негативными последствиями и переизбыток молибдена: ввиду его фитотоксичности растения становятся небезопасными при употреблении людьми и животными. Хотя на продуктивность и развитие культуры увеличенное количество молибдена плохо практически не влияет.

Максимальную эффективность это микроудобрение демонстрирует при задействовании для зернобобовых и овощных культур, одно- и многолетних трав, а также на лугах, засеянных бобовыми. Наиболее восприимчивы к его недостатку капуста, цитрусы, свекла. Положительно отзываются на внесение овес и пшеница, лен и кукуруза, картофель, гречиха, томаты.

Примечательно, что его можно использовать на разных типах почвы: дерново-подзолистой, серой лесной, на осушенных торфяниках и выщелоченных черноземах. При этом от почвы зависит и эффективность молибденовокислого аммония. Еще один фактор, влияющий на результат – совмещение с иными удобряющими композициями: лучше всего компонировать данную субстанцию с добавками фосфор + калий.

Способы внесения:

– в почву. Так удается благотворно повлиять на развитие растений, за счет повышения взаимодействия Mo и P;

– предпосевная обработка семян. Самый эффективный и часто используемый способ внесения, на который не нужно тратить много времени и самого вещества. Для этого необходимо опрыскать посадочный материал этим минудобрением, разведенным в воде, или замочить в таком растворе. Когда лучше выполнять такую обработку? Не имеет значения: можно и непосредственно перед высадкой, и за пару дней до этого, и даже за несколько месяцев. Главное, чтобы после смачивания семена были тщательно просушены в естественных условиях;

– внекорневые подкормки. Для культур, которые далее необходимо разделять на зерно/семена, лучшее время обработки – в начале цветения. Для трав-многолетников, которые после будут перерабатываться на сено – осенью, только в год высевания и лишь после того, как будет развита поверхность листа. Изначальное использование данного удобрения повысит урожайность до 30 %.

Как удобрение молибдат аммония используется и в аквариумистике. На его основе создают удобряющие составы для аквариумных растений и тесты на фосфаты.

Молибдат аммония как реагент

Данное вещество – очень удобный хим. реагент. С помощью молибдата аммония обнаруживают фосфорорганические пестициды, моно- и дифосфорные кислоты.

Может служить самостоятельным реактивом или выступать его составляющей. К примеру, для фотометрических определений выполняют перекристаллизационную очистку аммония молибденовокислого. А молибденово-ванадиевые реактивы находят применение в фотометрическом определении фосфора.

В первом случае рабочий материал готовят так: 250 г (NH4)2MoO4 растворяют в 0,4 л воды при t 80 °С, вносят концентрированный аммиак. Когда появляется характерный запах, производят фильтрацию в емкость с этанолом. Далее материал охлаждают до 10 °С и отстаивают на протяжении часа. Полученные кристаллы пропускают через воронку Бюхнера, промывают и сушат.

Другие сферы применения: изготовление проволоки и прутков, лент и порошка в металлургии, катализ гидроочистительных процессов в нефтепромышленности, создание электроламповой техники, особо чистого молибдена и твердых сплавов, производство премиксов и комбикормов.

И как удобрение, и как реагент молибдат аммония очень важен. Перед применением изучите специфику этого соединения и используйте полученные сведения на практике – тогда результат и в сельском хозяйстве, и в аквариумистике, и в химической отрасли, и в других направлениях покажет себя во всей красоте.

Сельское хозяйство | UniversityAgro.ru

В почвах имеются значительные запасы марганца: в желтоземах — более 1%, в дерново-подзолистых и черноземных почвах — 0,1-0,2%. Однако большая часть находится в виде труднорастворимых оксидов и гидроксидов. В почве марганец представлен преимущественно в двухвалентной форме, в силикатах и оксидах может замещать Fе2+ и Мg2+, что приводит к их выщелачиванию. В кислых почвах марганец образует с гидроксидами железа железомарганцевые конкреции.

Растения могут поглощать соединения двухвалентного марганца. Соединения марганца других валентностей неустойчивы, особенно трехвалентная форма. В восстановительной среде присутствует Mn4+, образующий труднорастворимые соединения. В условиях избыточного увлажнения создаются анаэробные условия, которые усиливают восстановительные процессы, увеличивая содержание доступного марганца. На орошаемых землях марганец не вносят. В сухую погоду, прежде всего на карбонатных почвах со щелочной реакцией среды, двухвалентный марганец переходит в трех- и четырехвалентную формы, недоступные растениям. В этих условиях эффективность марганцевых удобрений возрастает. Подвижность марганца повышается при внесении аммиачных форм азотных удобрений.

Известь и щелочные формы удобрений уменьшают подвижность марганца и его поступление в растения. Дерново-подзолистые почвы, как правило, содержат наибольшее количество марганца. От дефицита марганца особенно страдают сахарная, кормовая и столовая свекла, пшеница, кукуруза на зерно, ячмень, люцерна, овощные и плодовые культуры.

В результате высокого содержания марганца в почве его количество в почвенном растворе может достигать 2200 мкг/л с образованием комплексов с фульвокислотами. При близкой к нейтральной реакции почвенного раствора растения могут испытывать недостаток марганца из-за перехода в труднорастворимые соединения. В практике для предотвращения связывания ионов металлов почвой и улучшения их доступности растениями применяют хелаты марганца и железа, которые вносят с поливной водой и при некорневых подкормках.

Хелаты микроэлементов широко используются. Например, в Швеции некорневые подкормки сахарной свеклы проводят хелатом с содержанием 6 % марганца, в качестве лиганда используется ЭДТА. В опытах, проведенных в Великобритании, обработка посевов яровой пшеницы повысила урожайность с 2,8 до 4,7 т/га.

Марганцевые удобрения применяются на Украине. Положительный эффект от их применения отмечается на черноземах, карбонатных, солонцеватых и каштановых почвах с низким содержанием доступного для растений марганца. На почвах Нечерноземной зоны марганец эффективен при его содержании 25-55 мг/кг почвы, Черноземной — 40-60 кг/кг почвы, на сероземах — 10-50 мг на 1 кг почвы.

Марганцевые удобрения вносят на серых лесных почвах, слабовыщелоченных черноземах, солонцеватых и каштановых почвах под овес, пшеницу, кормовые корнеплоды, картофель, сахарную свеклу, кукурузу, люцерну, подсолнечник, плодово-ягодные, цитрусовые и овощные культуры.

К числу почв, нуждающихся в использовании марганцевых удобрений, относятся карбонатные черноземы, каштановые и бурые полупустынные почвы Поволжья, Северного Кавказа, Урала и Западной Сибири. На северных дерново-подзолистых почвах эти удобрения чаще всего не дают положительного эффекта, в некоторых случаях отрицательно влияют на растения.

К.К. Гедройц и О.К. Кедров-Зихман указывали на положительное действие марганца на известкованных почвах. Марганцевые удобрения не всегда положительно действуют на различных почвах юга европейской части России. Вероятно, на применение этих удобрений следует обращать внимание на щелочных, нейтральных и карбонатных почвах, легких по гранулометрическому составу.

Микроудобрения: особенности применения

Чтобы понять, для чего необходимы микроудобрения, необходимо разобраться, прежде всего, в структуре и механизме воздействия подкормок на растения с учетом типа почвы и целевой направленности отдельных микроэлементов.

Что это такое?

Микроудобрения — подкормки «особого назначения», содержащие полезные вещества-микроэлементы, хорошо усваиваемые растениями в небольших дозах. Причем, каждый микроэлемент (медь, марганец, цинк, бор, кобальт и др.) непосредственно действует на весь обменный процесс, питание и рост растения.

Особенность микроудобрений в том, что каждый микроэлемент отвечает за определенную функцию и по своему составу не может быть заменен другим составляющим.

Недостаток или переизбыток какого-либо микроэлемента приводит к снижению урожайности и качества плодов, кормовых и злаковых культур, что естественным образом отражается на здоровье человека.

Виды и характеристики

Виды микроудобрений определяются по основному элементу подкормки, который является основополагающим в конкретном удобрении:

  1. Соли неорганических кислот (значительно уступают хелатным подкормкам). Плохо растворяются, применяются только на кислых и слабокислых почвах; возможны побочные эффекты (токсичность, загрязнение почвы).
  2. Гуматы (соли калия и натрия) — комплексные соединения микроэлементов с органическими кислотами. Хорошо растворяются, стимулируют рост растений, нейтрализуют токсичные вещества, но не являются полноценным источником микроэлементов.
  3. Марганцевые подкормки применяются на песчаных почвах, черноземах и торфяниках для засева свеклы, кукурузы, посадки картофеля.
  4. Цинковые удобрения применяются на карбонатных почвах, используются для плодовых и цитрусовых деревьев, способствуют закладке почек и побегов, также удобряют почву под посев фасоли, сои, для некоторых овощей (картофель, морковь и пр.).

Существуют комплексы микроудобрений, в состав которых входит 2 и более микроэлемента, выполняющих сразу несколько функций:

  1. Мастер. Микроудобрение хелатной формы применяется для цветов и зерновых растений, подходит для любой почвы.
  2. Сизам. Комплексная подкормка содержит сахарозу, применяется для обработки семян и как внекорневое удобрение.
  3. Реаком — хелатное удобрение, снижает нитраты, повышает урожайность кукурузы, зерна, картофеля.

Молибденовые

Микроудобрения вносятся в подзолистые и лесные почвы, выщелоченные черноземы, где молибден наиболее подвижен и доступен для корневой системы зерновых, бобовых и овощных растений.

Молибденовые удобрения непригодны для кислых почв; перед применением почву известкуют.

Виды:

  • порошок (15 — 17% молибдена) применяется для обработки семян и клубней (семена пересыпаются порошком, порошок можно растворить в воде);
  • молибденово-кислый аммоний (более 50%) используется для заделки в почву перед посевом, также как внекорневая подкормка;
  • простой и двойной молибденовый суперфосфат (до 0,2%) подсыпается в междурядья или в рядки при посеве;
  • в промышленном земледелии используются отходы электролампового производства (до 0,4 %), удобряются большие по площади поля; урожайность возрастает более чем на 20%.

Молибденовые удобрения повышают урожайность бобовых в среднем на 3 ц с 1 га; сена клевера — на 9 ц; урожай моркови, капусты, редиса возрастает до 25%; кроме того, увеличивается состав белка в зерновых и бобовых культурах, возрастает количество витаминов и сахара в овощах.

Борные

Подкормки используются, в основном, на торфяных и дерново-подзолистых почвах.

Используются при посеве свеклы и других корнеплодов, для рассады капусты, для плодово-ягодных растений, бобовых культур и льна. Способствуют развитию точки роста растений, препятствуют появлению солнечных ожогов, пятнистости, пигментации листьев, а также защищают их от скручивания.

Виды:

  • бура (11% бора) и борная кислота (до 40%); применяется для семян, в начале лета при появлении первых листьев;
  • простой и двойной суперфосфат борный (до 0,4% бора) вносится во время перекопки для посева (в междурядья);
  • селитра с бором подходит для всех растений, помогает противостоять гнили и парши, защищает от пятнистости плоды деревьев, улучшает их вкус и качество.

Медные

Целевое назначение — торфяные почвы в низинах, заболоченные местности (дефицит меди).

Подкормки применяются для плодовых деревьев (способствуют развитию почек и листьев), зерновых культур (урожайность повышается в 5 — 6 раз). Рекомендуется использовать для посева льна, сахарной свеклы, подсолнечника.

Виды:

  • медный купорос (соляные кристаллы насыщенно голубого цвета содержат более 55% оксида калия и 1% меди) предназначается для обработки семян и для листовых подкормок; особенность — кристаллы хорошо растворяются в воде;
  • колчедан (пиритные размолотые огарки в виде золы) содержат до 0,6% меди.

Медные микроудобрения способствуют повышению белка в зерне, сахара и витамина С в плодах и овощах.

Хелатные микроудобрения

В дословном переводе хелат означает «клешня», что само по себе характеризует особенность формы хелатных удобрений.

Каждая молекула химического элемента в хелатных удобрениях обволакивается органической оболочкой, что позволяет растениям беспрепятственно принять подкормку.

Процесс усвоения неорганических соединений в хелатной форме происходит эффективнее и качественнее.

Удобрения применяются для цветов, садовых деревьев, особенно полезны для рассады.

Например, удобрение ЭДТА, 15% хелат меди, используется для озимых зерновых злаков, кукурузы и картофеля (перед высадкой). Улучшается белковый обмен и фотосинтез. Злаковые посевы защищены от мороза, а летом урожай стойко переносит зной и засушливость.

Комплексные микроудобрения в гранулах «5 Элемент» способствуют развитию мощной корневой системы. Подкормка безвредна (нет токсинов), отличается высокой скоростью проникновения в клетки растения и отличной усвояемостью (урожай возрастает на 20-25 %).

Польза для растений

Плодородные почвы, богатые на органику (систематически удобряемые навозом) практически не нуждаются в подкормках отдельными микроэлементами.

Целевая группа для использования микроудобрений — бедные, песчаные, известковые почвы.

Здесь дефицит бора, молибдена, ванадия, цинка, йода и других микроэлементов вызывает болезни растений, что, в конечном счете, сказывается на урожайности и качестве самого продукта «на выходе». Плоды и злаки плохо вызревают, имеют низкие вкусовые и полезные качества, плохо хранятся и перерабатываются.

Польза микроудобрений очевидна:

  • устраняются болезни, повышается устойчивость растений к поражению вредоносными бактериями и грибками;
  • увеличивается содержание витаминов, сахара, жиров, белков и крахмала;
  • растения лучше переносят засуху и воздействие прямых солнечных лучей;
  • повышается стойкость к колебаниям температуры (например, при высадке рассады в открытый грунт весной);
  • повышается действие других питательных веществ (азот, фосфор, калий и пр.).

Инструкция по применению

Борные микроудобрения разводятся водой из расчета 1 г на 5-6 л воды.

Колчеданные огарки вносятся 1 раз в 5 лет с осени под вспашку или весной (за 2 недели до посева); доза — 50 г, сульфат меди берется из расчета 1 г на 1 кв. м. — 100 г на сотку. Внекорневые подкормки — 1 г медного купороса на 8 -10 л воды.

Молибденовые удобрения рассчитываются по формуле: 200 гр. на 1 га для внесения в почву до перекапывания. Для опудривания и опрыскивания берется 50 — 60 гр. молибдата аммония на 1 га площади; внекорневые подкормки, доза — до 100 — 200 гр. на 1 га.

Перед использованием любого удобрения следует внимательно изучить инструкцию (количество микроэлементов может быть разным, что влияет на дозировку).

Чтобы не «перекормить» растения, правильно определить дозировку и вид микроудобрения, предварительно специалистами проводится химический анализ (пробы) почвы на содержание микроэлементов.

В заключение нужно отметить, что в современных экологических условиях для получения хорошего и качественного урожая без микроудобрений не обойтись.

Благодаря легкой структуре и доступной форме комплекс микроэлементов быстро усваивается не только растениями, но и почвой, что благотворно влияет на ее плодородность в целом и работает на перспективу.

Главный редактор и автор сайта. Агроном-овощевод по образованию, закончил аграрный университет МСХА им. К. А. Тимирязева в 2010 г.

Увлекаюсь опытным садоводством и журналистикой. Люблю читать классику, любимый автор — Ф. М. Достоевский. Мечтаю стать директором крупного с/х предприятия 🙂

Микроудобрения

Сульфат меди

Сульфат меди

Сульфат меди

(медный купорос) CuSO4 х 5H2O – 23,4-24,9 % меди. Представляет собой кристаллический порошок серо-голубого цвета, обладающий высокой растворимостью в воде. Медный купорос применяется для предпосевной обработки семян, некорневых подкормок различных сельскохозяйственных культур. Эффективность медных подкормок возрастает в засушливые годы.

Хлористый калий с медью

содержит 0,7 % меди.

Аммофос с медью

содержит 0,9 % меди.

КАС с содержанием меди

0,5 и 0,05 % Cu, используется для основного внесения и подкормки.

Пиритные огарки

– местное медное удобрение, 0,2–0,3 % меди. Вносятся один раз в 4–5 лет осенью под зяблевую вспашку или весной под предпосевную культивацию.

Цинковые микроудобрения

Цинковые микроудобрения – удобрительные вещества, содержащие цинк. Этот элемент водит в состав 30 ферментов, принимает участие в белковом и фосфорном обмене, синтезе аскорбиновой кислоты, ростовых веществ и тиамина, повышает водоудерживающую силу растений.

Недостаток цинка является причиной нарушения углеводного обмена и задержки образования крахмала, сахарозы и хлорофилла. Самым распространенным цинковым микроудобрением является сернокислый цинк (Zn SO4 х 7 Н2О). Отработана технология получения аммофосфата и аммофоса, содержащих 1,5 % Zn.

Сернокислый цинк

(ZnSO4 х 7Н2О) содержит 21–23 % цинка. Применяют для корневой подкормки и обработки семян.

Молибденовые микроудобрения

Молибденовые микроудобрения – удобрительные вещества, содержащие молибден. Этот элемент входит в состав нитратредуктазы и участвует в восстановлении нитратов, а также нитрогеназы, играющей основную роль в фиксации атмосферного азота свободно живущими и клубеньковыми бактериями. Недостаток молибдена тормозит процесс восстановления нитратов в растениях, что приводит к снижению урожая и ухудшению его качества.Известкование кислых почв приводит к мобилизации почвенного молибдена.

Наиболее распространенными молибденовыми микроудобрениями являются молибдат аммония ((NH4)6Мо7О244Н2О), молибдат аммония – натрия, отходы электроламповой промышленности. Разработаны технологии получения аммофоса и аммофосфата с содержанием 1,4 % молибдена.

Молибдат аммония

(NH4)6Мо7О24 4Н2О содержит 50–52 % Мо. Применяется для обработки семян бобовых трав, некорневой подкормки зернобобовых, кормовой и сахарной свеклы.

Молибдат аммония–натрия

содержит 36 % Мо.

Отходы электроламповой промышленности

содержат 12 % Мо.

Аммофос и аммофосфат с молибденом (1,4 % Мо) используются для основного и припосевного удобрения под овощи, зернобобовые, семенники бобовых трав.Нормы этих удобрений устанавливаются по фосфору.

Марганцевые микроудобрения

Марганцевые микроудобрения – удобрительные вещества, содержащие марганец. Необходимость этого элемента обусловлена его активным участием в окислительно-восстановительных реакциях, в фотосинтезе и других жизненно важных для растения процессах. Недостаток марганца, как и его избыток, отрицательно влияет на рост и развитие растений. В качестве марганцевых удобрений применяются сернокислый марганец, марганизированный суперфосфат, марганизированная нитрофоска, марганцевые шламы.

Марганец сернокислый пятиводный – серосодержащее марганцевое удобрение (MnSO4 х 5H2O). Применяется как в основной прием одновременно с основными удобрениями, так и в качестве подкормок.

Марганизированный суперфосфат

– удобрение в виде гранул светло-серого цвета. Содержит 1–2 % марганца. Получают путем добавления при грануляции к порошковидному суперфосфату 10–15 % марганцевого шлама. Применяется так же, как и суперфосфат.

Марганизированная нитрофоска

содержит 0,9 % марганца. Хорошо усваивается растениями. Получают при добавлении в нитрофоску марганцевого шлама. Применяют так же, как обычную нитрофоску.

Марганцевый шлам

содержит от 10–17 % марганца, представляет собой отходы марганцевого производства. Кроме того, содержит 20 % кальция и магния, 25–28 % кремнекислоты, 8–10 % полуторных оксидов и небольшое количество фосфора. Марганцевые шламы эффективно применяются в качестве основного удобрения одновременно с азотно-калийно-фосфорными удобрениями.

Кобальтовые микроудобрения

Кобальтовые микроудобрения – удобрительные вещества, содержащие кобальт. Этот химический элемент активно участвует в процессе фиксации атмосферного азота клубеньками бобовых и небобовых растений. Обогащенность кобальтом растительной продукции для животноводства имеет большое значение, поскольку отсутствие кобальта в кормах менее 0,07 мг на 1 кг сухого сена вызывает акобальтоз, снижение продуктивности и даже гибель животных.

В качестве кобальтовых удобрений используют сернокислый кобальт и хлористый кобальт.

Сернокислый кобальт

CoSO4 . 7(H2O) – розово-красные кристаллы, медленно растворимые в воде. Применяется для подкормки растений в течение вегетационного периода, а также для предпосевной обработки семян.

Хлористый кобальт

CoCl2 . 6(H2O) – красно-фиолетовые кристаллы, легко растворимые в воде и в этиловом спирте. Применяется для подкормки растений в течение вегетационного периода, а также для предпосевной обработки семян.

Йодсодержащие микроудобрения

Йодсодержащие микроудобрения – удобрительные вещества, содержащие йод. Этот элемент оказывает стимулирующее действие на рост и развитие растений. Йод содержится во многих базовых минеральных и органических удобрениях: фосфоритной муке, суперфосфате, сернокислом аммонии, хлористом калии, навозе, торфе, золе и других. Для вегетационной подкормки и предпосевной обработки семян используется раствор кристаллического йода. В настоящее время разработан ряд удобрений, содержащих йод.

Ванадийсодержащие микроудобрения

Ванадийсодержащие микроудобрения – удобрительные вещества, содержащие ванадий. Важность этого элемента в жизни растений неоспорима. В качестве ванадийсодержащих удобрений применяются метаванадат натрия, ванадат аммония. Кроме того, разработан ряд удобрений, содержащих наряду с другими важными микроэлементами и ванадий.

Метаванадат натрия

(ванадиевой кислоты (HVO3) натриевая соль двухводная) (NaVO3)– однородная субстанция желтого цвета или белый порошок. Применяется в качестве подкормки или для предпосевной обработки семян.

Метаванадат аммония

(NH4VO3) представляет собой неорганическое соединение в виде соли аммиака и метаванадиевой кислоты, имеет вид желтоватых или чисто белых кристаллов, хорошо растворимых в воде. Может применяться в основное внесение и для вегетационной подкормки. Необходимо строго соблюдать указания производителя по применению. (Составитель)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *